Integrating Three Types of Chemical Representation

Three levels of representation

This past summer our conversations turned to, “How can we improve our instruction to try and prevent the initial misunderstanding?” We had all read Dorothy Gabel’s article Improving Teaching and Learning Through Chemistry Education Research: A Look to the Future. We were intrigued by the author's description of the three fold system of representing concepts in chemistry.

 

The Evolution of Technology in My Classroom

Technology is a word that can generate a great deal of debate in a chemistry classroom. I got into an interesting conversation with a teacher who is new to my school this year as she was moving into her classroom next to mine. That room had only had one occupant since the school opened 25 years ago and I have been the only teacher in my classroom since the school opened.

What it's like to develop a PBL experience from scratch... because I think I forgot.

Trenches

Over the last few weeks, I have been working with a middle school physical science teacher, Morgan, to develop a PBL experience for her students as they learn the basics of the atom, periodic trends, and bonding types. She is a first year teacher and has been so fun to work with. It has been really eye opening to work with her - in a good way. As I work with another teacher, I have realized that I have forgotten how big of a task it is to create ALL OF THE PIECES of these experiences for students (and let’s be real, we are a bit crazy to create this during the school year). My goal is always to be real with my writing and experiences, and here is something a bit more real for you all. In this post, I am sharing what it is like to develop a project from both my perspective and, most importantly, from Morgan’s. Think of it as a view from the trenches.

Rethinking Stoichiometry

BCA table

Stoichiometry is arguably one of the most difficult concepts for students to grasp in a general chemistry class. Stoichiometry requires students to synthesize their knowledge of moles, balanced equations and proportional reasoning to describe a process that is too small to see. Many times teachers default to an algorithmic approach to solving stoichiometry problems, which may prevent students from gaining a full conceptual understanding of the reaction they are describing.