Book Suggestion: The Alchemy of Air

One of my goals for 2017 was to read more chemistry non-fiction. I accomplished that with three and a half books read. That doesn't seem like much, but given how busy I've been lately it was quite an accomplishment! I offer a brief review of my most recent book here, "The Alchemy of Air" by Thomas Hager.

Moving Beyond Le Châtelier

Is it time for us as chemistry teachers to move beyond the Le Châtelier Principle as justification for why disturbances to equilibrium systems cause particular “shifts”? The author shares his new approach to teach equilibrium and provide his students with a more rigorous understanding of the concept.

An Activity to Demonstrate the Principles of Chemical Kinetics and Equilibria

A classroom activity to demonstrate the principles of chemical kinetics and equilibria and the utility of the mole concept is described here. The activity involved no hazardous materials or complex equipment and can be enjoyed and appreciated by general studies students as well as chemistry majors.

Time required: 

30 - 45 minutes of class time


Chemical Thinking Interactives

As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the Journal of Chemical Education article “When Atoms Want” by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.

A New Standard: Refine the Design of a Chemical System by Applying Engineering Principles

Teachers are accustomed to implementing new learning standards developed by state or national leaders. My state, Georgia, chose not to adopt the newest national standards. State leaders wrote the “Georgia Standards of Excellence” instead. Full implementation of the GSE begins in the 2017-2018 school year.

Big Ideas in AP Chemistry: Connections Among Thermodynamics and Equilibrium

I have a confession: thermodynamics is not my strong suit. The data set I got from the College Board confirmed my lack of confidence in the summer of 2015. With the hope of improvements, I spent some time revamping my thermo unit and I implemented it near the end of last school year. I will share an activity that I feel was quite formative for students and for me in making connections among thermodynamic principles and equilibrium.


Titration of an Esterification Reaction to Determine Equilibrium Constant

ChemEd X recently made a Call for Contributions soliciting input regarding the big ideas being put forth by organizations like AP. The first thing that came to mind was a lab I modified that is centered around making connections between topics. Admittedly, this lab is not a "big idea" per se. Rather, it's the big idea that students should be able to make connections between topics we study to solve problems. So in this blog post, I would like to share a lab activity that relies on these connections - between stoichiometry, esterification, equilibrium, kinetics, titrations and uncertainty of calculations. I will also share the resources I have created to support my students through the process of working through these calculations.

Time required: 

Three class periods

Day 1: setup of equilibrium mixture; roughly 30 minutes

Day 2: titration of equilibrium mixture (approximately 1 week after Day 1); roughly 60 minutes

Day 3: calculations; variable time required - typically 30-90 minutes depending on the student group

Equilibrium Lab

Just this week I'm reviewing equilibrium with my IB Chemistry seniors after they finished some summer study on the topic. One of our classes was spent manipulating a classic equilibrium involving copper ions and a copper-chloride complex ion.

Time required: 

Approximately 45-60 minutes is usually enough time to complete all six test tubes, and to answer most of the questions and have some discussion about the results.

How do you Incorporate Equilibrium Into Your Curriculum?

Throughout the last ten years teaching both chemistry and Advanced Placement Chemistry I have realized that the concept of equilibrium does not receive enough attention in my first-year chemistry course. Sure, the concept of equilibrium is a topic mentioned and identified throughout the course however the dialogue in regards to conditions that would shift the chemical system is minimal at best.