Technology is a word that can generate a great deal of debate in a chemistry classroom. I got into an interesting conversation with a teacher who is new to my school this year as she was moving into her classroom next to mine.
Over the last few weeks, I have been working with a middle school physical science teacher, Morgan, to develop a PBL experience for her students as they learn the basics of the atom, periodic trends, and bonding types. She is a first year teacher and has been so fun to work with. It has been really eye opening to work with her - in a good way. As I work with another teacher, I have realized that I have forgotten how big of a task it is to create ALL OF THE PIECES of these experiences for students (and let’s be real, we are a bit crazy to create this during the school year). My goal is always to be real with my writing and experiences, and here is something a bit more real for you all. In this post, I am sharing what it is like to develop a project from both my perspective and, most importantly, from Morgan’s. Think of it as a view from the trenches.
We had just had some snow days and I had the feeling that I was getting behind. In one class we were approaching the topic of orbital diagrams and electron configurations. I was tempted to just say, "Here are the notes." Sometimes there is nothing wrong with that. This time, something was eating at me. Instead I picked a POGIL (link is external) from the "High School Chemistry" (link is external) book that presented the ideas through guided inquiry.
The new IB curriculum includes compound identification using NMR, IR and Mass spectroscopy. My current high school lab does not have any of these available. And that's no surprise, given the cost of these machines is far out of our budget. And while some of you may be lucky enough to have a connection to a local university or college, for the rest of us what are the options when it comes to teaching spectroscopy?
Have you ever wondered what is the theoretically largest possible value for the atomic number of an element? Using some introductory physics and algebra, you can get your students thinking about this idea.
This year my students experienced something a little new to them on the Chemistry Olympiad. It was a question about the crystal structure of a mineral. I have not been teaching the “unit cell” concept in great detail and started to reevaluate my unit on liquids and solids. This question has been appearing on the semifinal exam of the Chemistry Olympiad for a few years but not the local exam until this year. I actually like it when something like this happens. It allows me to reevaluate what I am teaching in class, provides me an opportunity to learn new things, and brings new material into my curriculum.