As we pilot new laboratory activities in the classroom, my students and I are in constant dialogue. Not only do they leave feedback at the end of each lesson (what did you learn, what was your favorite part, what was you least favorite part), but we talk throughout the experiment. Recently our discussion was focused on the questions.
First, I would like to thank all those who commented on my last blog. For the record, I was wrong. Initially I looked at Linus Paulings early papers as he worked on electronegativity. Much of the work focused on connecting the concept to bond energy. There were some great comments posted to the blog. Probably one of the best was explaining how the concept of electronegativity presents a model for bonds. It is not an observable quantity. This really helped me explain it better to my students. As the commentor posted, all models have limitations. Second, the person commented that in Linus Pauling's General Chemistry book published in 1970 (Dover Publishing) that he does indeed talk about the differences in electronegativity to discuss a type of ionic and covalent character. I stand corrected.
This year in the midwest United States, winter has been a fickle friend. I haven’t seen the same amount of snow or ice as in recent years, but I still made sure I was prepared for it at our home. I went to my local big box hardware store in December and contemplated buying rock salt (NaCl), and NaCl/calcium chloride mixture, or just calcium chloride. Growing up my dad had switched entirely to calcium chloride because it was less damaging to the brick pavers leading to our porch and backyard. In fact, calcium chloride is generally much safer toward plants and soil than NaCl. Even though calcium chloride is much more expensive than rock salt (it was about twice the cost for 10 pounds more), that what’s I chose. Why?
In my high school chemistry class, a unit we cover is that of atomic structure. In particular, given an elements symbol, mass number, atomic number, and charge, the objective would be for the student to determine the atoms number of protons, neutrons, and electrons. I have several apps/program suggestions that can be useful for this purpose.
Most chemistry teachers somehow teach Lewis dot structures. These structures are the foundation for VSEPR theory, three dimensional models and ultimately how the structure allows us to predict what happens on a large scale. Here is the crazy part...there are a number of different "rules" that really do not make a whole lot of sense. Do a quick search...everyone has there own rules.
In this blog post, I’ve asked Natalie about her journey as a woman of color along the path toward a future in a STEM field. I can’t begin to understand her perspective, so I’ve asked her to lend her voice to this issue. I believe it is important that we, as educators, take some time to reflect on what she has to say. Sometimes, the things we don’t say are resonating just as loudly as the things we do.