
Did you know that Pyrex glassware used in chemistry labs is different than Pyrex glassware used in kitchens? Pyrex glass used in chemistry experiments is made of borosilicate glass, whereas the Pyrex used when baking is made of soda lime glass. What’s the difference? Borosilicate glass is resistant to thermal shock, but soda lime glass is not. The video below dramatically shows the effect of thermal shock in a measuring cup made of Pyrex soda lime glass.
This difference can be important! How many times have you rinsed a very hot beaker with room temperature water when working in the lab? I have done so many times, knowing that borosilicate lab glassware is capable of withstanding large differences in temperature without cracking. I had always assumed that Pyrex glass was synonymous with borosilicate, thermal-shock resistant glass. This was indeed the case until the late 1990’s when Corning, Inc. sold rights to the Pyrex name to World Kitchens. After the sale, Corning continued to sell borosilicate glass for laboratory use under the Pyrex name. However, World Kitchens began to sell soda lime glass for kitchen use – also under the Pyrex name. World Kitchens made this change because soda lime glass is cheaper to manufacture and more resistant to breakage from mechanical stress than borosilicate glass. Imagine my surprise one day in the early 2000’s when I decided it would be safe to boil water in a Pyrex measuring cup directly on the stovetop...the measuring cup cracked, sending broken glass and hot water all over the stove and floor! In fact, reports of “exploding glassware” began to crop up as other folks began to unwittingly expose World Kitchens’ soda lime glass to extreme temperature differentials while working in the kitchen. Now Pyrex is simply a brand name that has nothing to do with the chemistry of the glassware being sold.
The difference in heat shock resistance between borosilicate glass and soda lime glass can be quantified using some simple relationships. Borosilicate glass has a low coefficient of thermal expansion (3 x 10-6 K-1), which means that borosilicate glass does not undergo sizeable expansion upon heating or contraction upon cooling. On the other hand, soda lime glass has a high coefficient of thermal expansion (9 x 10-6 K-1), which means that it will undergo sizeable expansion upon heating and contraction upon cooling. The following equation provides a simple quantitative relationship between thermal shock and coefficient of thermal expansion, . The linear elastic thermal stress,
, on a glass is a measure of the stress the glass can withstand without shattering:
Equation 1
In Equation 1, is the temperature differential a glass object can experience without breaking,
is the coefficient of thermal expansion of the glass and E is the elastic modulus of the glass. Most glasses – including both borosilicate and soda lime glasses – are capable of withstanding stresses of about 5000 psi. Borosilicate and soda lime glass have a similar elastic modulus: 9.1 x 106 psi for borosilicate glass and 10.2 x 106 psi for soda lime glass. Using the appropriate values for each glass type in Equation 1, we see that borosilicate glass can experience a 183 K difference in temperature without shattering. However, soda lime glass can only experience a 54 K difference in temperature before shattering. Thus, you can safely pour boiling water (373 K) in an ice-cold beaker (273 K) of borosilicate glass without breaking the beaker (
= 100 K < 183 K). Try the same thing with a measuring cup of soda lime glass, and the measuring cup will likely break, because in this case
= 100 K > 54 K. I wish someone would have told me all this a few years ago…
Thanks go to Kristen Lewis and Nathan Ford for assistance in filming and carrying out the experiment of pouring room temperature water on a very hot measuring cup.
To learn more about this topic, check out the following:
1. R.C. Brandt and R.I. Martens, “Shattering Glass Cookware” http://www3.nd.edu/~rroeder/ame60646/slides/glasscookware.pdf
2. Doris and Kenneth Kolb, “Glass – Sand + Imagination” http://pubs.acs.org/doi/abs/10.1021/ed077p812
Safety
Safety: Video Demonstration
Safety: Video Demonstration
Demonstration videos presented here are not meant as tools to teach chemical demonstration techniques. They are meant as a tool for classroom use. The demonstrations may present safety hazards or show phenomena that are difficult for an entire class to observe in a live demonstration.
Those performing the demonstrations shown in this video have been trained and adhere to best safety practices.
Anyone thinking about performing a chemistry demonstration should first read and then adhere to the ACS Safety Guidelines for Chemical Demonstrations (2016) These guidelines are also available at ChemEd X.
General Safety
General Safety
For Laboratory Work: Please refer to the ACS Guidelines for Chemical Laboratory Safety in Secondary Schools (2016).
For Demonstrations: Please refer to the ACS Division of Chemical Education Safety Guidelines for Chemical Demonstrations.
Other Safety resources
RAMP: Recognize hazards; Assess the risks of hazards; Minimize the risks of hazards; Prepare for emergencies
All comments must abide by the ChemEd X Comment Policy, are subject to review, and may be edited. Please allow one business day for your comment to be posted, if it is accepted.
Comments 2
It happened to me!
Tom,
Thanks for the blog post. The background you gave on the 'Pyrex' name being sold puts things in context for me. Over the Christmas holiday, we were baking our turkey in the oven in a Pyrex dish. I was basting the turkey with some warm (but not hot) stock and the Pyrex dish exploded right there in the oven. To say I was shocked would be an understatement. Mostly I was glad I didn't get cut, or any glass in my eye. Since I wasn't in the lab, I wasn't wearing my trusty goggles. It took quite an effort to clean up all the glass shards. And we ordered pizza delivery, since our turkey was ruined.
And now I know why!
Thanks.
Hi Lowell
Hi Lowell, thanks for commenting. I like pizza over turkey, anyway!