high school chemistry

Who inspires you?

heating of copper II sulfate

This blog post may be a bit non-traditional, but in this submission I recall a memory from early in my teaching career when my dad (who was an environmental chemist) visited my classroom. The day remains embedded in my memory bank, and had a profound impact on how I view labs - as an opportunity to extend the learning.

Titrations and Microscale Chemistry

Microscale titrations in a well-plate

I tend to enjoy acid base titrations for several reasons.  First, students get to work with burettes, acids, bases and they see a nice "color change" when they reach an endpoint. Many times, students who tend to struggle with pen and paper testing excel at the "hands-on" approach. Titrations also dovetail well with stoichiometry which provides a nice review of information closer to the end of the year.

Modeling the Concept of Ionic Bonding

film canisters with different strengths of magnets

When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond? 

Straight Talk from AP Chemistry Students about College Board's "AP Insight: Chemistry" Teaching Tools and Assessments

The College Board offers the opportunity to have access to guided inquiry "Building Block" performance tasks, "Building Block" digital assessments, and FRQ-style end of "Building Block" assessments directed specifically at nine "challenge areas." The "challenge areas" are organized according to the AP Chemistry six big ideas. I have used most of the resources available in AP Insight this year with my honors and AP chemistry students. Today, post-AP exam, I asked the students to provide me with feedback about the usefulness of those resources.

Especially JCE: May 2017

JCE May 2017 cover

Erica Jacobsen shares highlights from the May 2017 issue of the Journal of Chemical Education that are of special interest to high school chemistry teachers.

JCE 94.05 May 2017 Issue Highlights

Journal of Chemical Education May 2017 Cover

Lasting Value and High Impact

The May 2017 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: project- and inquiry-based laboratories; measuring value and impact; research on core ideas and clickers; new twists on classic activities; understanding diffraction; acid-base chemistry; teaching informed by technology: flipped learning, biochemistry labs, and scientific computing for chemists; from the archives: chemistry helps feed the world.

Exploring the Diet Coke and Mentos Experiment

Diet Coke and Mentos eruption

I think this experiment provides a fantastic vehicle to involve students of all ages in small, hands-on and exploratory research projects. Like many others, my students and I have investigated various aspects of this interesting fountain.

Brainstorming with the Alchemie Animator

screen shot of app description on iTunes store

 Alchemie Animator by Alchemie, LLC is the latest creation from Julia Winter, CEO of Alchemie and the creator of the app Chairs. The free app is available in the itunes store and is currently designed for both iPhone and iPad.

Chemistry in a Bottle

density bottles

Are you familiar with the dynamic density bottle experiment? This interesting experiment was invented by Lynn Higgins, and is sold by various science supply companies. Two immiscible liquids (usually salt water and isopropyl alcohol) and two different types of plastic pieces are contained within a dynamic density bottle. The plastic pieces display curious floating and sinking behavior when the bottle is shaken. You can find out even more about how a colleague and I have explored the experiment by attending our session within the ChemEd X Conference: Chemistry Education for the Next Generation.

What to do after AP? Build and test simple dye-sensitized solar cells!

solar cell with clips

Have you considered having your students make solar cells? If your AP kids can understand batteries, solar cells are a logical next step. I usually do independent projects after AP along with final presentations, but I stumbled upon this activity the other day and my mind exploded in excitement and thought I would share. In the future, I would definitely do this with my students!