Share

JCE ChemEd Xchange provides a place for sharing information and opinions. Currently, articles, blogs and reading lists from ChemEd X contributors are listed below. We plan to include other items that the community wishes to share through their contributions to ChemEd X.

Great Introduction for Physical/Chemical Changes and Balancing

I hate to sound like a broken record but I used two activities from Grand Valley State Target Inquiry Program (link is external) that worked amazingly well and had a great "flow". Chad Bridle wrote two inquiry activities that dovetail together. The first is "Changes You Can Believe In". Students are presented first with nine cards that are particulate drawings of changes that occur in matter.

What it's like to develop a PBL experience from scratch... because I think I forgot.

Trenches

Over the last few weeks, I have been working with a middle school physical science teacher, Morgan, to develop a PBL experience for her students as they learn the basics of the atom, periodic trends, and bonding types. She is a first year teacher and has been so fun to work with. It has been really eye opening to work with her - in a good way. As I work with another teacher, I have realized that I have forgotten how big of a task it is to create ALL OF THE PIECES of these experiences for students (and let’s be real, we are a bit crazy to create this during the school year). My goal is always to be real with my writing and experiences, and here is something a bit more real for you all. In this post, I am sharing what it is like to develop a project from both my perspective and, most importantly, from Morgan’s. Think of it as a view from the trenches.

Rethinking Stoichiometry

BCA table

Stoichiometry is arguably one of the most difficult concepts for students to grasp in a general chemistry class. Stoichiometry requires students to synthesize their knowledge of moles, balanced equations and proportional reasoning to describe a process that is too small to see. Many times teachers default to an algorithmic approach to solving stoichiometry problems, which may prevent students from gaining a full conceptual understanding of the reaction they are describing. 

POGIL, Posting Keys Online, Cheating and Checkpoints

POGIL High School Chemistry

We had just had some snow days and I had the feeling that I was getting behind. In one class we were approaching the topic of orbital diagrams and electron configurations. I was tempted to just say, "Here are the notes." Sometimes there is nothing wrong with that. This time, something was eating at me. Instead I picked a POGIL (link is external) from the "High School Chemistry" (link is external) book that presented the ideas through guided inquiry.

Using "Chemical Detectives" iPad App to Practice Spectroscopy

Chemical Detectives app

The new IB curriculum includes compound identification using NMR, IR and Mass spectroscopy. My current high school lab does not have any of these available. And that's no surprise, given the cost of these machines is far out of our budget. And while some of you may be lucky enough to have a connection to a local university or college, for the rest of us what are the options when it comes to teaching spectroscopy?

 

Unit Cell Modeling

unit cell models

This year my students experienced something a little new to them on the Chemistry Olympiad. It was a question about the crystal structure of a mineral. I have not been teaching the “unit cell” concept in great detail and started to reevaluate my unit on liquids and solids. This question has been appearing on the semifinal exam of the Chemistry Olympiad for a few years but not the local exam until this year. I actually like it when something like this happens. It allows me to reevaluate what I am teaching in class, provides me an opportunity to learn new things, and brings new material into my curriculum. 

Struggles with Bonding...Making it Simple...

Chemical misconceptions

I have always struggled teaching the concept of bonding. What is a chemical bond? Is it just covalent or ionic? What about hydrogen bonds? Are those real bonds or just attractive forces pretending to be bonds? If they are not official bonds, what do we call them? How about intermolecular forces? How are those different from salt crystals that attract to other salt crystals but are called ionic bonds? How about "electronegativity"? If there is a metal nonmetal compound but it is just shy of the "cut off" for the difference between polar covalent and ionic, what type of bond is it? Essentially, as I got confused over the years, this translated into confused students and rushing on to get to the next unit in an attempt to cut my losses.