What Is the Pressure Inside a Bottle of Soda?
What is the pressure inside a bottle of soda pop? Read this short article to find the surprising answer to this question, and also to learn how to do an experiment to answer this question for yourself!
What is the pressure inside a bottle of soda pop? Read this short article to find the surprising answer to this question, and also to learn how to do an experiment to answer this question for yourself!
In this lab students are given a film canister, a quantity of Alka Seltzer of their own choosing and any materials available in the room to investigate factors that affect the rate of reaction. They work with their groups to create CER boards and then the class engages in a Glow and Grow session. Tips for using this activity in a virtual setting are offered as well.
Using the online simulation tool (Atomsmith Classroom Online) and the ADI framework students investigate the properties of gases, along with two gas laws. An ADI "whiteboard discussion" helps in getting students to really process what the results of experiments mean to us as chemists - and how this leads to expanding our understanding of matter. This activity lends itself to an online classroom.
The use of anthocyanins in red cabbage extracts as pH indicators has long been a popular classroom activity. Flowers, fruits and vegetables contain a diverse range of anthocyanins. This investigation explores further applications of plant-derived dyes including reversible reactions based on oxidation/reduction chemistry and other reactions to illustrate colour changes that are not solely dependent on pH change. By using household materials and plant dyes, this investigation may potentially be completed at home if necessary.
In the “Airbag challenge” the students are tasked with developing a safe airbag for a car company. This formative assessment explores students’ thinking about the question “How can chemical changes be controlled?” The central concept in this challenge is the application is stoichiometry. Students are expected to use the numbers of moles of reactant consumed or product formed in a balanced chemical equation and to determine the change in the number of moles of any other reactant and product. Students need to use molar mass to convert mass of a reactant or product to moles for use in stoichiometric calculations or to convert moles from stoichiometric calculations to mass. Students use the ideal gas law equation to determine the numbers of moles in a sample of gas not at standard conditions.
Teaming up with a STEM Science Coach or mentor can be rewarding to both you and your students. I was surprised at the impact a science mentor has on students when I recieved an email from a former student.
With the school year quickly approaching, science teachers will at some point need to decide the role of laboratory investigation within their new learning environment. To help this decision-making process, the author focuses on two available options that he believes have the greatest potential for offering a legitimate approach toward authentic investigations in a digital environment.
As physical distancing continues and we persist in teaching our chemistry classes online, it behooves us as teachers to spend some time considering how we can purposefully observe and decipher the written work that our students submit.
With the current global COVID-19 pandemic, there has been much discussion of “flattening the curve” by social distancing. These ideas can be demonstrated chemically, for example, by the iron-catalyzed decomposition of hydrogen peroxide to produce an oxygen gas foam. Decreased hydrogen peroxide concentrations, representing decreased human population concentrations from social distancing, produce oxygen gas foam, representing cases of illness, at a slower rate. A similar demonstration can be achieved using the popular Diet Coke and Mentos experiment. These simple experiments are best used as stand-alone demonstrations.
As teachers, we can leverage fruitful discussions about chemical control with students to elicit more about students' initial ideas and ways of reasoning. From asking students to clarify their own thinking, we can identify students’ own productive ideas that we can capitalize on to advance their thinking.