Periodic Table Interactive Notebook
Nora Walsh outlines the interactive notebook pages she uses for her unit on the Periodic Table. All of the documents and foldables are available for download.
Nora Walsh outlines the interactive notebook pages she uses for her unit on the Periodic Table. All of the documents and foldables are available for download.
In this ChemBasics Talk, Rachmad Tjachyadi offers everything necessary to plan a unit on the topic of the periodic table and periodic trends including linked NGSS standards, introductory activities and handouts, manipulative activities, practice problems, links to real world context, a lab and an assortment of videos. Watch the recording and access resources he shared.
Many novice students struggle to see elements' valence electron configuration trends across the rows and columns on the periodic table. There are many diagrams and explanations available as resources for students however, a deeper understanding may be possible when students discover these trends independently through a game called Electron Configuration Battleship.
Rajasree Swaminathan has developed a series of books that combines story-telling and visual representation of the elements as human characters. Along with hands-on activities, these books have created enthusiasm in her chemistry classes.
This virtual adaptation provides students the opportunity to engage in a process similar to the one Mendeleev used as he constructed the original version of the periodic table we still use today.
This book is filled with computer based labs that can be used in a range of classes from high school chemistry to an undergraduate course in physical chemistry. Bentham Science has generously provided free online access to the eBook through June 30, 2020.
In this lesson, students are offered a variety of alternative versions of the periodic table. Students will identify trends that are consistent from one table to the next in order to understand why the tables they are working with and Mendeleev's version are organized in the manner that they are. This lesson was designed to fit the NGSS performance expectation HS-PS 1.1 but can be used for any first year chemistry course or modified at your discretion.
Trends related to placement of elements on the periodic table are often taught using diagrams in a textbook. Students often memorize trends, but to get a true grasp of their meaning and what causes certain patterns is best understood when students create their own models and discuss the patterns with others.
This five puzzle mystery aligns with my chemistry curriculum after instruction on the properties of elements and electron configurations. I use this mystery as a review to prepare for assessments over the properties of elements, symbols on the periodic table and the difference between groups and periods. Also incorporated within the puzzles are basic trends such as the number of subatomic particles, mass number, melting point, and other characteristics of specific elements.
Are kids learning? Given the time it takes to implement and grade the activity, do I get a lot of "educational moments" out of it? Does it fit into the culture of the classroom? Is there a great deal of "conceptually rich" material in the activity that students can build on? I believe that two activities I tried this week fit the bill.