Simple formation of metal mirrors
Beautiful, metallic mirrors of copper or silver can easily be formed in test tubes. Simply add the appropriate metal salt to a test tube, and heat! These reactions should be performed in a fume hood.
Beautiful, metallic mirrors of copper or silver can easily be formed in test tubes. Simply add the appropriate metal salt to a test tube, and heat! These reactions should be performed in a fume hood.
This post describes a simple way to generate blue, green, orange, and yellow copper complexes, and to use these complexes to introduce students to the effect of temperature on chemical equilibria. The protcol avoids the use of caustic agents, allowing the experiments to be conducted by students as a laboratory-based investigation.
Have you seen the rainbow candy experiment? It's a very simple experiment that involves pouring water into a plate that has M&M's candies or Skittles arranged in a pattern. Very curious shapes of sharply divided regions form spontaneously. How does this happen?!
What is the pressure inside a bottle of soda pop? Read this short article to find the surprising answer to this question, and also to learn how to do an experiment to answer this question for yourself!
Learn how to thermochemically analyze the Devil's Milkshake chemical demonstration - just in time for Halloween!
In this lab students are given a film canister, a quantity of Alka Seltzer of their own choosing and any materials available in the room to investigate factors that affect the rate of reaction. They work with their groups to create CER boards and then the class engages in a Glow and Grow session. Tips for using this activity in a virtual setting are offered as well.
Using the online simulation tool (Atomsmith Classroom Online) and the ADI framework students investigate the properties of gases, along with two gas laws. An ADI "whiteboard discussion" helps in getting students to really process what the results of experiments mean to us as chemists - and how this leads to expanding our understanding of matter. This activity lends itself to an online classroom.
The use of anthocyanins in red cabbage extracts as pH indicators has long been a popular classroom activity. Flowers, fruits and vegetables contain a diverse range of anthocyanins. This investigation explores further applications of plant-derived dyes including reversible reactions based on oxidation/reduction chemistry and other reactions to illustrate colour changes that are not solely dependent on pH change. By using household materials and plant dyes, this investigation may potentially be completed at home if necessary.
What's a better way to start the new school year than with some new experiments? Learn how to use a variety of color changing experiments to teach students about the Diet Coke and Mentos experiment, acids, bases, chemical and physical changes, and climate change.
In the “Airbag challenge” the students are tasked with developing a safe airbag for a car company. This formative assessment explores students’ thinking about the question “How can chemical changes be controlled?” The central concept in this challenge is the application is stoichiometry. Students are expected to use the numbers of moles of reactant consumed or product formed in a balanced chemical equation and to determine the change in the number of moles of any other reactant and product. Students need to use molar mass to convert mass of a reactant or product to moles for use in stoichiometric calculations or to convert moles from stoichiometric calculations to mass. Students use the ideal gas law equation to determine the numbers of moles in a sample of gas not at standard conditions.