Solution to Chemical Mystery #15: The Leaky Cup
The solution to Chemical Mystery #15: The Leaky Cup is shown here.
The solution to Chemical Mystery #15: The Leaky Cup is shown here.
Determination of Lewis Dot structures and visualization of the shapes of molecules using VSEPR theory is an example of an abstract concept that students often find difficult to learn. I have found it useful to have a single worksheet/packet that my students can add to as we cover Lewis dot structures, resonance, VSEPR shapes, polarity, and intermolecular forces.
Heidi Parks offers a soap-making lab or activity that can be run in a chemistry class with 25-30 students working at the same time. She usually does this activity right before spring break, as it provides enough time for the soap to harden and cure (high school students are impatient to use their soaps right away, which you should not do with cold process soap). She has used this soap making activity at different points in the curriculum: during intermolecular forces, during acids and bases, and during stoichiometry.
In Chemical Mystery #10, plastic straws are observed to “magically” change color when waved in the air. Check out the explanation and the video.
When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond?
You probably know what happens when you place dry ice in water. Do you know what happens when dry ice is placed in acetone or glycerin? Read this and find out!
Solution to Chemical Mystery #8, and...a challenge!
In this blog post, I'll discuss how I've expanded my use of model kits within my chemistry class to help explore a variety of topics with my students.
Tom Kuntzleman loves to share chemical mysteries and that inspired me to create a list of mysteries that are appropriate for the main topics covered in IB Chemistry. In this blog post I'd like to share some detail about how I modified the mystery of the burning water.
Red dye #40 found in strawberry Kool-Aid and various cloth fibers can be used in a very simple experiment that can teach students about intermolecular forces. A video is included that describes the experiment and analysis of results.