modeling

Chemical Thinking Interactives

As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.

Modeling the Concept of Ionic Bonding

When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond? 

Using Visual BCA Tables to Teach Limiting Reactants

A few months ago I was searching the internet, looking for a better way to teach stoichiometry to my pre-AP chemistry students. While my methods of dimensional analysis “got the job done” for most students, I would still always lose students and many lacked true understanding of what was happening in the reaction. I wanted to try something new that would promote a better chemical understanding. In my search for this elusive stoichiometry method, I came across Dena Leggett’s ChemEd X blog post entitled “Doc Save Everyone”, as well as other posts about BCA tables from Lauren Stewart, Lowell Thomson, and Larry Dukerich. 

You Are Invited: Chemistry Instruction for the Next Generation

ChemEd X and the Journal of Chemical Education (JCE) are collaborating to offer a virtual conference like most have never seen before. It is not a webinar. You do not have to schedule specific hours to view a live presentation. I think of it as similar to a virtual book/journal club with the added benefit of having the author leading it. In this case, authors were selected from among those who have published recent articles, activities and research in JCE on the topic of student-centered instruction in chemistry. The theme of this inaugural conference is Chemistry Instruction for the Next Generation.

An Interesting Way to look at Reactions....

Atomsmith works really well on Chromebooks and other platforms. Students can manipulate molecules, add water, do experiments, heat solutions and examine intermolecular forces all on the particulate level. Another nice feature is the "Experiment" section. There are a number of guided activities, usually never more than a page or two. I have found them to be great supplements for activities, experiments and demonstrations.

Walking in the Footsteps of Scientists Who Came Before Us

I started teaching in a chronological order when I began using Modeling Instruction in my classroom. During the second year of "walking in the footprints of the scientists that came before us", I wanted my students to see where they were walking and a colleague and I came up with the idea of making footprints for each of those scientists and posting them on a timeline.