Acid, Base, pH and Food Chemistry
Students will be engaged in this activity that will help them make the connection between food and chemistry. Acid, bases and pH are addressed.
Students will be engaged in this activity that will help them make the connection between food and chemistry. Acid, bases and pH are addressed.
If rhubarb stem is placed in a solution of permanganate, the purple permanganate ion is reduced to the colorless Mn2+ ion. It is thought that the oxalic acid present in rhubarb causes this reduction. The investigations presented in this post provide evidence that this may not be the whole story...
This blog post may be a bit non-traditional, but in this submission I recall a memory from early in my teaching career when my dad (who was an environmental chemist) visited my classroom. The day remains embedded in my memory bank, and had a profound impact on how I view labs - as an opportunity to extend the learning.
When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond?
I think this experiment provides a fantastic vehicle to involve students of all ages in small, hands-on and exploratory research projects. Like many others, my students and I have investigated various aspects of this interesting fountain.
Are you familiar with the dynamic density bottle experiment? This interesting experiment was invented by Lynn Higgins, and is sold by various science supply companies. Two immiscible liquids (usually salt water and isopropyl alcohol) and two different types of plastic pieces are contained within a dynamic density bottle. The plastic pieces display curious floating and sinking behavior when the bottle is shaken.
Erica Jacobsen shares highlights from the April 2017 issue of the Journal of Chemical Education that are of special interest to high school chemistry teachers.
The chemistry of the Sunflower dye found in McCormick’s Color from Nature food dyes is explored in this post. This is the last in a three-part series in which several experiments and demonstrations that can be done with Color from Nature food dyes are described.
My students and I tend to have good experiences with a hydrate inquiry lab that I have "tweaked" (see the previous blog). Essentially, my students have some practice with hydrates in the lab and then they are provided an unknown hydrate. They must separate off the water by heating and calculate the mass of the anhydrous salt and container before they come up and put it on the scale. As an added twist, they must also ask me a question about what information they need from me to calculate the mole to mole ratio of the salt to water.
The chemistry of the Berry dye found in McCormick's Color From Nature food colors is explored. This is part two of a three-part series in which the chemistry of McCormick's Color From Nature food colors is presented.