Education

Representing the Macroscopic, Particulate, Symbolic, & Real World Representations of Chemical Reactions.

 Last year while attending the Biennial Conference on Chemical Education at GVSU I had the opportunity to hear a talk that showed a video of a chemical demonstration showing the burning of magnesium metal.  We have all seen many of these videos (thank you YouTube) and probably have performed this demo for our own students many times.  During the video it may have been represented with a chemical equation followed by the students being asked to balance the equation or maybe even predict the products.  Although the use of video including the showing of the equation nicely represents the macroscopic and symbolic representation, what was so unique about this particular video is that it also included the particulate representation embedded on top of the video of the demo.  This was the first time I had seen the particulate level representation done like that and so I was intrigued in wanting to find more of these representations.  

Periodic Table Board Game

During our “Periodic Table and Periodicity" unit, we take about 3 days to learn the content and another 3-4 days to practice the content (more for Chemistry 1, less for Honors). One way that I have my students review the content is by playing a board game that I recreated from an NSTA conference a few years ago.

Using an iPad simulation and an online Java applet to help students understand Maxwell-Boltzmann distribution curves

There are occasionally discussions amongst educators about the efficacy of using technology in the classroom. Does it really make a difference? One train of thought is looking at the use of technology through the SAMR lens. Is the technology simply a Substitution? Or does it Augment the learning compared to previous methods of learning the same material. Maybe the use of technology Modifies the learning tasks. Or will the technology actually Redefine the learning by allowing the student to interact with knowledge in a way that is impossible without this technology. With this in mind, I set about to use an iPad app and an online simulation to introduce my IB Chemistry students to the concept of Maxwell-Boltzmann distribution curves. I'm not sure exactly where it fits on the SAMR continuum, but without the simulations I could only show my students the graphical representation of the Maxwell-Boltzmann distribution curve. By using the simulations, I am attempting to help my students develope a deeper understanding of them.

Chemistry Olympiad

I have taught for almost 30 years and have attended my fair share of professional development. Many of these have been very good (ChemEd, BCCE, ACS, NSTA, and ICE) but nothing has been as motivating, influential, and beneficial to my career as getting involved in the Chemistry Olympiad. Every year, the ACS sponsors a local section contest for high school students.

Using Periodic Properties to Group Students for an Activity

Today in my IB Chemistry class we were reviewing the Born-Haber cycle. This has proven particularly challenging in the past so I wanted to try something a bit different and have the students review in groups. The task for each group of students was to create a visual Born-Haber cycle for potassium oxide - ignoring the math and calculations but instead focusing on each process within the cycle. I'd like to share how I grouped students using periodic properties.

Summer PD for Teachers

With spring just around the corner and warmer weather approaching, I find that I’m in active summer preparation mode.  This is the time of year when I’m trying to plan for the perfect summer balance between professional development and relaxation – both professional growth experiences in my