thermochemistry

Seeing Chemistry in a Different Light—FLIR Thermal Cameras in the Classroom

Before trying to use a piece of equipment, it’s worthwhile to have a basic understanding of how it works. To put it simply, FLIR cameras primarily deal with the infrared part of the EMR spectrum. The camera detects infrared energy and converts it into an electrical signal, which is then processed to produce a thermal image on a video monitor. 

Metabolic Marvels of Bear Hibernation- Part 2

The post-Thanksgiving excessive calorie-consumption 'blues' have arrived. How is it possible to eat so much? For a bear, it's easy. Easy as pie. Bears are champion eaters, spending about half the year eating non-stop in preparation for winter's foodless landscape. How can this calorie consumption observation about the bear world be used to teach certain chemistry concepts routinely covered? This post includes discussion and two classroom activities about the following common general chemistry topics/concepts- thermochemistry, unit conversions, and interpretation of numerical data. Enjoy...

Gibbs Free Energy Analogy

A common topic in chemistry discussion groups and forums is about the use of the terms “spontaneous reaction” versus “thermodynamic favorability”. This is a new activity for chemistry students who struggle with the correlation between changes in enthalpy, temperature, entropy, and the Gibbs free energy of a system; which relies on an analogy that most students will be familiar with.

Boltzmann Bucks—Helping Students Conceptualize Entropy

If you are looking to go beyond using traditional, arguably misleading, definitions of entropy involving “disorder” and “messy bedroom” analogies, the Boltzmann Bucks game fits the bill. The game, pulled from a Journal of Chemical Education article, provides a wonderful opportunity for students to more accurately conceptualize entropy.

Chemical Thinking Interactives

As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.

Demonstration: Reaction of Magnesium and Silver Nitrate

I found a version of this demonstration online a couple of years ago. I admit, when I first tried it with my class it was mostly for a crowd pleaser to demonstrate the activity series of metals, but I then became very intrigued by the processes occurring. The original source only referenced the “single replacement reaction” between Mg(s) and AgNO3(aq). Therefore, when I saw a grayish product (silver) I was not surprised. However, I was surprised by the white flash and the production of a white product, which were reminiscent of the classic combustion of magnesium demonstration. This led to some research and my conclusions that follow. Read through to the end and you will find a video of the demo.