demonstrations

JCE 94.06 June 2017 Issue Highlights

JCE June 2017 Cover

Engaging Participation and Promoting Active Learning

The June 2017 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: materials science and nanotechnology laboratories, promoting active learning, catalysis and kinetics, blue bottle reaction, cost-effective instrumentation, resources for teaching, from the archive: anchoring concept content maps.

Reduction of Permanganate Ion by Acids in Rhubarb, Apples, and Candy

Apples

If rhubarb stem is placed in a solution of permanganate, the purple permanganate ion is reduced to the colorless Mn2+ ion. It is thought that the oxalic acid present in rhubarb causes this reduction. The investigations presented in this post provide evidence that this may not be the whole story...

Modeling the Concept of Ionic Bonding

film canisters with different strengths of magnets

When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond? 

Especially JCE: May 2017

JCE May 2017 cover

Erica Jacobsen shares highlights from the May 2017 issue of the Journal of Chemical Education that are of special interest to high school chemistry teachers.

JCE 94.05 May 2017 Issue Highlights

Journal of Chemical Education May 2017 Cover

Lasting Value and High Impact

The May 2017 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: project- and inquiry-based laboratories; measuring value and impact; research on core ideas and clickers; new twists on classic activities; understanding diffraction; acid-base chemistry; teaching informed by technology: flipped learning, biochemistry labs, and scientific computing for chemists; from the archives: chemistry helps feed the world.

Exploring the Diet Coke and Mentos Experiment

Diet Coke and Mentos eruption

I think this experiment provides a fantastic vehicle to involve students of all ages in small, hands-on and exploratory research projects. Like many others, my students and I have investigated various aspects of this interesting fountain.

Chemistry in a Bottle

density bottles

Are you familiar with the dynamic density bottle experiment? This interesting experiment was invented by Lynn Higgins, and is sold by various science supply companies. Two immiscible liquids (usually salt water and isopropyl alcohol) and two different types of plastic pieces are contained within a dynamic density bottle. The plastic pieces display curious floating and sinking behavior when the bottle is shaken. You can find out even more about how a colleague and I have explored the experiment by attending our session within the ChemEd X Conference: Chemistry Education for the Next Generation.

Demonstration: Reaction of Magnesium and Silver Nitrate

Starting materials for demonstration

I found a version of this demonstration online a couple of years ago. I admit, when I first tried it with my class it was mostly for a crowd pleaser to demonstrate the activity series of metals, but I then became very intrigued by the processes occurring. The original source only referenced the “single replacement reaction” between Mg(s) and AgNO3(aq). Therefore, when I saw a grayish product (silver) I was not surprised. However, I was surprised by the white flash and the production of a white product, which were reminiscent of the classic combustion of magnesium demonstration. This led to some research and my conclusions that follow. Read through to the end and you will find a video of the demo.

Time required: 

30 minutes including preparation time.

A replacement Maxwell-Boltzmann Distribution Simulation

Maxwell-Boltzmann Distribution Simulation from Wolfram

In this Pick, I will share a replacement simulation I found for studying Maxwell-Boltzmann Distribution Curves, as the previous online simulation I used was no longer working due to Java issues.

JCE 94.04 April 2017 Issue Highlights

Journal of Chemical Education April 2017 Cover

Resources To Inform Teaching and Learning

The April 2017 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: green chemistry; environmental chemistry; using food chemistry to teach; 2016 Jame Bryant Award; development of important skills; chemical education research: assessment; advanced laboratories; from the archives: water quality.