Evidence, Models & Explanation

Nanopatterning with Lithography

In this Activity, students learn the general principles of serial and parallel nanofabrication techniques. Students use nylon spheres, contact paper, and talcum powder to form patterns. Using this macroscale analogy, students explore the parallel fabrication technique known as nanosphere lithography.

Checkerboard Chromatography

In this Activity, column chromatography separations are simulated using a grid, colored paper squares, and a six-sided die. Students observe the effects of changing flow rate, column length, and mobile phase composition. As squares come off the grid, the separation (or lack thereof) of the colors is noticeable.

Chemistry of Cement

In this Activity, students use a commercial cement mix to produce concrete. They investigate how changing key variables such as concentrations, curing temperatures, and the addition of various substances affects properties such as setting time, hardness, and plasticity.

Color My Nanoworld

This Activity introduces students to the unique properties of nanoscale materials through exploration of size-dependent optical properties of gold nanoparticles. Students first prepare a solution of gold nanoparticles. They then investigate the solution’s use as an electrolyte sensor by adding a non-electrolyte and a strong electrolyte, and observing any resulting color changes.

Determining Rate of Flow through a Funnel

In this Activity, students make funnels using plastic beverage bottles and rubber stoppers with differing numbers of holes or sizes of holes. They then determine the rate of flow of water through the funnels and identify factors that affect the rate of flow. This Activity uses easy-to-observe phenomena that model a chemical reaction with an identifiable rate-controlling step.

Whatever Floats (or Sinks) Your Can

In this Activity, students test whether cans of carbonated beverages sink or float in water and then determine whether caffeine content, soda color, or sugar content in the carbonated sodas is responsible for the buoyancy of the sealed cans. This Activity can be used as an introduction to density in a middle school physical science course, or a high school chemistry or physics course.

Garbage Juice: Waste Management and Leachate Generation

In this Activity, students use multi-colored breakfast cereal and liquid to model the concepts of leachate and leaching from municipal solid waste disposed of in a landfill. Students create a modern landfill model with the same material. This environmental chemistry Activity can be used to complement a celebration of Earth Day.

Bowling for Density!

In this Activity, students predict whether a given bowling ball will float or sink in tap water. Students design a procedure to collect radius and weight measurements to calculate the density of their ball. They then test their prediction by placing the ball in a large container of water, which yields the surprising observation that some bowling balls do float.

A Kool Reaction from the Fine Print

In this Activity, students gain an understanding of the importance of reading reagent labels both in chemistry class and on consumer products. Students explore the chemistry behind the directive on a package of Kool-Aid "Do not store in a metal container". The Activity illustrates properties of acids and metals.

Turning on the Light

In this Activity, students investigate the luminescent properties of common items such as glow-in-the-dark stickers, wintergreen-flavored hard candies, and a chlorophyll solution made from spinach leaves. After making observations, they use a flowchart to categorize the luminescent items as fluorescent, phosphorescent, or triboluminescent.