Modeling Instruction

Gas Laws and Deflategate

If you are looking for ideas to create an authentic opportunity for students to apply their knowledge of gas laws while integrating some of the most important science practices, then this activity may fit your needs.

Equilibrium Snowball Fight

For dynamic equilibrium, I like to use a physical analogy that pits students against each other in a classroom-wide “snowball” fight. Not only is this activity great for building students’ conceptualization of dynamic equilibrium, it is also really fun!

DIY Whiteboards for Less Than $2.00/Each.

Whiteboards are great learning tools in a science classroom. With these instructions, you can make eight 24-in x 24-in whiteboards for less than $2.00 each! Instructions for simple whiteboard stands are included.

Elements, Compounds, and a Vocabulary Card Sort

How many of you could recite, word for word, a definition you learned in school? When you first memorized the definition, you could state “inertia is a property of matter”, or “density is mass over volume.” However, you struggled to apply it to a new situation and maybe you were unsure of how to construct a model of what it meant.

Confessions of a Part-Time Modeler

In the summer of 2016, there was a Modeling WorkshopTM for High School Chemistry just before BCCE in Colorado. I already had planned to go to BCCE, so I took the plunge. Two weeks of daily instruction and labs in student mode as well as teacher mode debriefing was exhausting and exhilarating at the same time. I left with a folder and flashdrive of curriculum resources provided by AMTA (the American Modeling Teachers Association.

Some Like it Hot

In my class, I use the illustration of a mountain to help students push through the challenges of chemistry. Stoichiometry is the top of chemistry mountain. As we progress through the year, I say things like “the mountain is getting steep here!” or “there is not a lot of oxygen up here!” or “I will carry you up chemistry mountain if I have to!” to keep students motivated. When students finally get to the top of chemistry mountain (mid quarter 3), the air is thin, they are tired and they are ready to base jump off the mountain (see illustration from a former student below).

Selling and Implementing Roles and Teamwork in the Classroom

I saw the process of students thinking like scientists but what I struggled with, and I imagine many others do as well, is how students work together in groups. Yes...I know it is important but is this a big battle that I want to fight? I was fortunate to meet several people who have developed some wonderful “tricks of the trade” to help students work as “teams”.

 

Modeling the Concept of Ionic Bonding

When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond? 

Using Visual BCA Tables to Teach Limiting Reactants

A few months ago I was searching the internet, looking for a better way to teach stoichiometry to my pre-AP chemistry students. While my methods of dimensional analysis “got the job done” for most students, I would still always lose students and many lacked true understanding of what was happening in the reaction. I wanted to try something new that would promote a better chemical understanding. In my search for this elusive stoichiometry method, I came across Dena Leggett’s ChemEd X blog post entitled “Doc Save Everyone”, as well as other posts about BCA tables from Lauren Stewart, Lowell Thomson, and Larry Dukerich.