1. Determine the molar mass of the following compounds:

a. Na₂CO₃

SOLUTION 1:
$$(23.0g/mol) + (12.0g/mol) + (16.0g/mol) = 51.0g/mol$$

Name: ANSWERS

SOLUTION 2:
$$2(23.0g/mol) + (12.0g/mol) + 3(16.0g/mol) = 106.0g/mol$$

b. $Ca_3(PO_4)_2$

SOLUTION 1:
$$3(40.1g/mol) + 2(31.0g/mol) + 8(16.0g/mol) = 310.3g/mol$$

SOLUTION 2:
$$3(40.1g/mol) + (31.0g/mol) + 8(16.0g/mol) = 279.3g/mol$$

c. CaCl₂

SOLUTION 1:
$$2 (40.1g/mol) + 2(35.5g/mol) = 151.2g/mol$$

SOLUTION 2:
$$(40.1g/mol) + 2(35.5g/mol) = 111.1g/mol$$

d. NH₄NO₃

SOLUTION 1:
$$4(14.0g/mol) + 4(1.0g/mol) + 3(14.0g/mol) + 3(16.0g/mol) = 150.0g/mol$$

SOLUTION 2:
$$(14.0g/mol) + 4(1.0g/mol) + (14.0g/mol) + 3(16.0g/mol) = 80.0g/mol$$

2. A pop can contains around 3.34×10^{23} aluminum atoms. How many moles of aluminum are contained in a pop can?

SOLUTION 1:

$$3.34 \times 10^{23}$$
 atoms $\times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ atoms}} = 5.55 \times 10^{45} \text{ mol of Al}$

SOLUTION 2:

$$3.34 \times 10^{23}$$
 atoms $\times 10^{23} = 0.555$ mol of Al 6.02×10^{23} atoms

3. The average glass of water contains 235.8 g of water molecules. How many moles of water molecules are in the average glass of water?

235.8 g
$$x$$
 1 mol = 13.08 mol H_2O 18.0g

SOLUTION 1:

18.0 g x
$$1 \text{ mol}$$
 = 0.07634 mol H₂O 235.8 g

4. Iron (Fe) is a common building material. A standard 2-inch finishing nail contains about 8.55×10^{21} iron atoms. What is the mass of a finishing nail?

8.55 x
$$10^{21}$$
 atoms x 1 mol x 6.02 x 10^{23} atoms = 9.22 x 10^{43} g Fe 55.8g 1 mol

8.55 x
$$10^{21}$$
 atoms x $\frac{1 \text{ mol}}{6.02 \text{ x } 10^{23} \text{ atom}}$ x $\frac{55.8 \text{ g}}{1 \text{ mol}}$ = 0.793 g Fe

5. An underground cavern is completely filled with 8198 g of methane gas (CH₄). What is the volume (in L) of the underground cavern? (Assume the gas is at STP conditions)

8198 g x 1 mol x 22.4 L = 1.148 x
$$10^4$$
 L 1 mol

8198 g x 1 mol x 16 g =
$$5.856 \times 10^3 \text{ L}$$

22.4 L 1 mol