stoichiometry

Rethinking Stoichiometry

Stoichiometry is arguably one of the most difficult concepts for students to grasp in a general chemistry class. Stoichiometry requires students to synthesize their knowledge of moles, balanced equations and proportional reasoning to describe a process that is too small to see. Many times teachers default to an algorithmic approach to solving stoichiometry problems, which may prevent students from gaining a full conceptual understanding of the reaction they are describing. 

A Quick and Dirty Stoichiometry Lab...Differentiation and Inquiry?

There is a traditional stoichiometry lab I have done before. It involves adding dilute hydrochloric acid to sodium bicarbonate, boiling off the fluid and then getting the mass of the sodium chloride. Students then can solve the percent yield for the sodium chloride based on the amount of sodium bicarbonate they use. It is not a bad lab. Something about having hot ceramic watch glasses with acid just makes me a bit nervous. I am not sure where I got this new lab, but it has been one that has evolved over the years It is quick, dirty, relatively simple and uses over the counter (mostly) materials.

Going from Cookbook to Inquiry...Messy but worth it.

We, as teachers, can see that life is sometimes like this and we care enough about our students that we want to try to prepare them for careers and problems that we can’t even imagine….because we believe that good education can empower people to go further and reach higher than they could ever dream….and maybe the journey we will  start together begins with a simple question in which the answer may not seem immediately obvious...and that is O.K….

Conceptual Chemistry

In a recent contribution to ChemEd X "Stoichiometry is Easy", the author states that he has "vacillated over the years between using an algorithmic method, and an inquiry-based approach to teaching stoichiometry. " I would like to suggest that there is another approach to mastering stoichiometry and that it should precede the algorithmic one: it is the conceptual approach based on a particle model to represent the species involved in chemical reactions.

Stoichiometry is Easy

This article describes a three week lesson plan for teaching stoichiometry using an algorithmic method. Two labs (one designed as a laboratory quiz) several cooperative learning exercises, student worksheets and guided instructional frameworks (forcing students to develop good habits in writing measures and doing problem solving) are included. The highlight of the lessons is the "chemistry carol" (based on Felix Mendelssohn's music for "Hark! The Herald Angels Sing") in which students recite a five-step algorithm for completing stoichiometry problems.