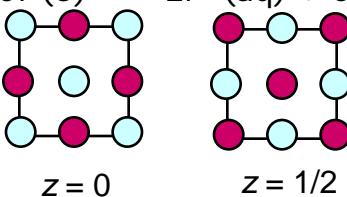


61. (Equilibrium) Consider the bonds that must be made or broken for the reaction
 $O_2N-NO_2(g) \rightleftharpoons 2 NO_2(g)$


The reaction will be
endothermic, exothermic

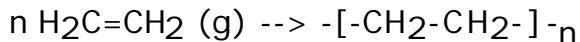
62. (Extended structures, discrete molecules, solubility) The reaction for dissolving gaseous HCl in water is $HCl(g) \rightarrow H^+(aq) + Cl^-(aq)$.

How many bonds are broken per HCl formula unit when a sample of gaseous HCl dissolves?

zero, **one**, many

The layer sequence of LiCl is shown below. The reaction for dissolving the extended solid in water is $LiCl(s) \rightarrow Li^+(aq) + Cl^-(aq)$.

How many bonds are broken per LiCl formula unit when a chunk of LiCl dissolves?
zero, one, **many**


66. (Enthalpy, equilibrium) $N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$ + reaction energy; Which are collectively stronger bonds?

those in the reactants, **those in the products**

What effect will spraying H_2O into the system have if NH_3 is far more soluble in H_2O than N_2 and H_2 ?

no effect, **increase product**, increase reactants

75. (Polymers, thermodynamics) Consider the polymerization of ethylene in which, neglecting the ends of the polymer, many C=C double bonds worth ~ 600 kJ/mol each are converted to twice as many C-C single bonds in polyethylene worth ~ 350 kJ/mol each.

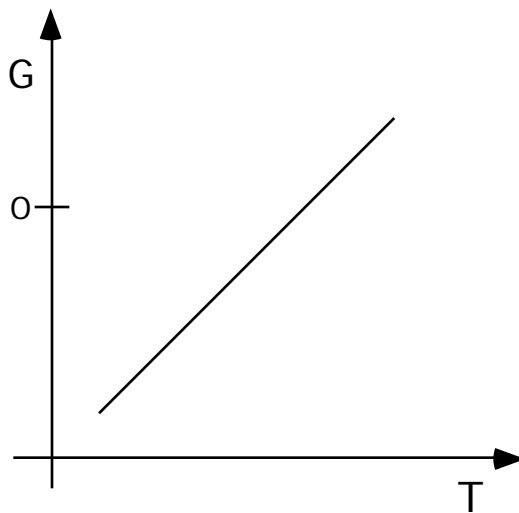
This reaction is
exothermic, endothermic, thermoneutral

What happens to the entropy in this reaction?
increases, **decreases**, remains the same

191. When graphite is burned to yield CO_2 , 394 kJ of energy are released per mole of C atoms burned. When C_{60} is burned to yield CO_2 approximately 435 kJ of energy is released per mole of carbon atoms burned. Would the buckyball-to-graphite conversion be exothermic or endothermic?

exothermic, endothermic

If heat were added to the graphite/C₆₀ system, would the equilibrium shift toward graphite or C₆₀?


graphite, C₆₀

204. Which of the following processes will have a change in entropy less than 0?

- A. $\text{CaCO}_{3(\text{s})} \rightleftharpoons \text{CaO}_{(\text{s})} + \text{CO}_{2(\text{g})}$
- B. $\text{N}_{2(\text{g})} + 3\text{H}_{2(\text{g})} \rightleftharpoons 2\text{NH}_{3(\text{g})}$
- C. $\text{H}_{2\text{O}}_{(\text{s})} \rightleftharpoons \text{H}_{2\text{O}}_{(\text{l})}$

A, B, C

205. The following graph of the change in enthalpy versus temperature (T) corresponds to which of the following situations?

- A. $H > 0$ $S < 0$
- B. $H > 0$ $S > 0$
- C. $H < 0$ $S < 0$

A, B, C

210. For the reaction in which solid carbon dioxide (dry ice) sublimes to become gaseous carbon dioxide, $\text{CO}_{2(\text{s})} \rightarrow \text{CO}_{2(\text{g})}$, which of the following is true for the reaction as written?

- The reaction is endothermic ($H^\circ > 0$) and the entropy decreases ($S^\circ < 0$)
- The reaction is endothermic ($H^\circ > 0$) and the entropy increases ($S^\circ > 0$)
- The reaction is exothermic ($H^\circ < 0$) and the entropy decreases ($S^\circ < 0$)
- The reaction is exothermic ($H^\circ < 0$) and the entropy increases ($S^\circ > 0$)

216. Many processes have a likelihood of occurring that is proportional to $\exp(-E/RT)$. In this relationship, E is the energy required for the process, R is the gas constant, and T is absolute temperature. According to this expression, the process is most probable for the combination of

- Large E and low temperature
- Large E and high temperature
- Small E and low temperature
- Small E and high temperature