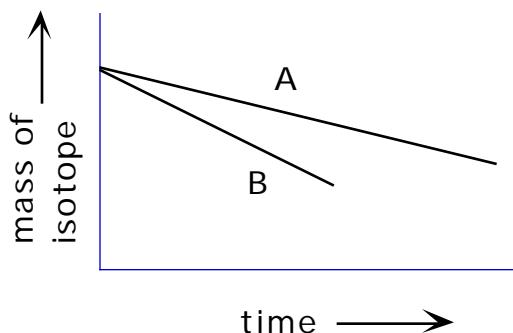


34. (Thermal conductivity; Ch. 7 “Companion”) If students have a seat/desk with metal and wooden parts that are not in direct contact with their bodies, ask about the relative temperature: Which is colder? **Demonstration:** Measure the temperature of each part with a digital thermometer.
 wood, metal, **both are at the same temperature**
 (Tie in with thermal equilibrium and the calculated value of ambient thermal energy as RT.)

If the temperature of the room goes from 20 degrees C to 40 degrees C, the ambient thermal energy

doubles, is halved, **increases by less than 10%**

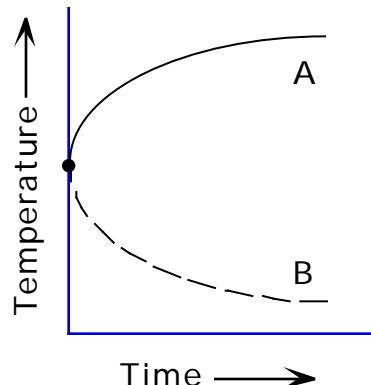

At-Seat Demonstration 7.5 “Companion”: Touch the wood and metal part of the desk. Which material conducts heat better and thus has a higher thermal conductivity?
 wood, **metal**, the two materials are the same

88. (Isotopes, Half-life) The half-life of ^{238}U is 4.5×10^9 years; that of ^{235}U is 7.1×10^8 years. If at the moment of the birth of the universe there were equal amounts of ^{238}U and ^{235}U , which is now in excess?

^{235}U , **^{238}U** , still equal amounts

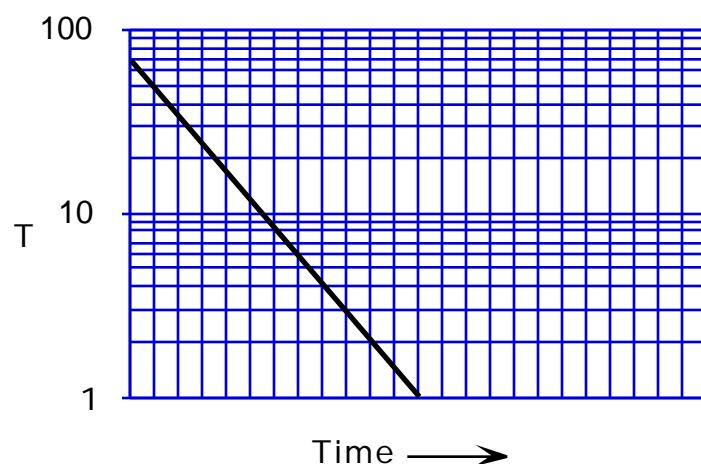
Referring to the graph below, which line represents the decay of ^{238}U , as opposed to that of ^{235}U ?

A, B

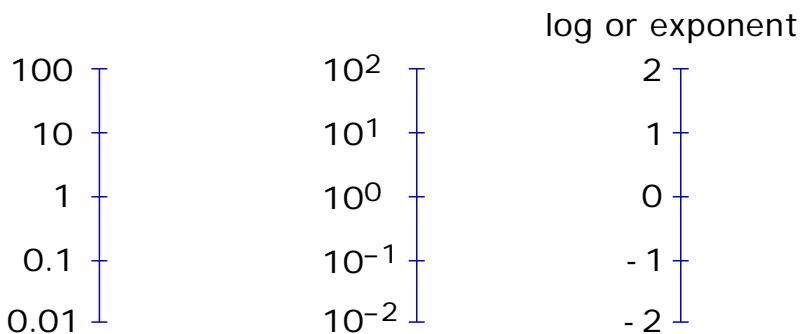


91. (Thermodynamics) **Demonstration:** Pour hot water into a room temperature vessel. What is the equilibrium temperature of the water?
 > room temperature, = **room temperature**, < room temperature

108. (Radioactivity) Does $t_{1/2}$ depend on chemical composition?
 yes, **no**


110. (Thermodynamics, logarithms) Which plot represents the temperature of a beaker of hot water left to sit out in a cool room?

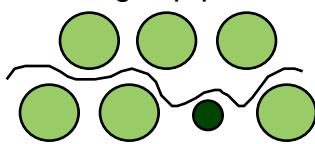
A, B



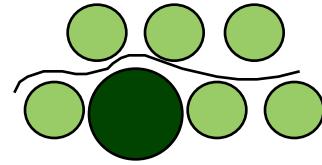
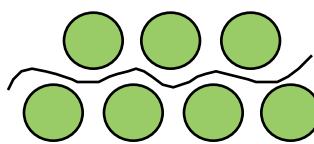
A semilog plot of $\log [(\text{Temp. of hot water}) - (\text{Room temperature})]$ vs. time is linear. Can the equilibrium temperature difference of zero be shown on such a plot?

yes, no

111. (Logarithms) Omit some numbers from any of the indicated logarithmic number lines and ask what they are.



113. (Thermal energy, work hardening; Ch. 6 "Companion") **Demonstration 6.4** "Companion": After work hardening a piece of copper metal, it can be made soft again by **heating**, cooling

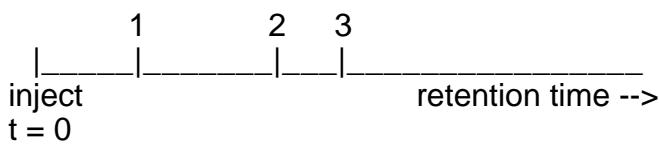


114. (Plastic deformation, slip planes; Ch. 6 "Companion") Which situation allows easiest slippage of planes of atoms past one another, as sketched below?

identical spheres in both layers, a layer with a large impurity atom, a layer with a small impurity atom

Which of the two impurities acts like a "speed bump" and which like a "pothole," in impeding movement along slip planes?

"pothole"

"speed bump"

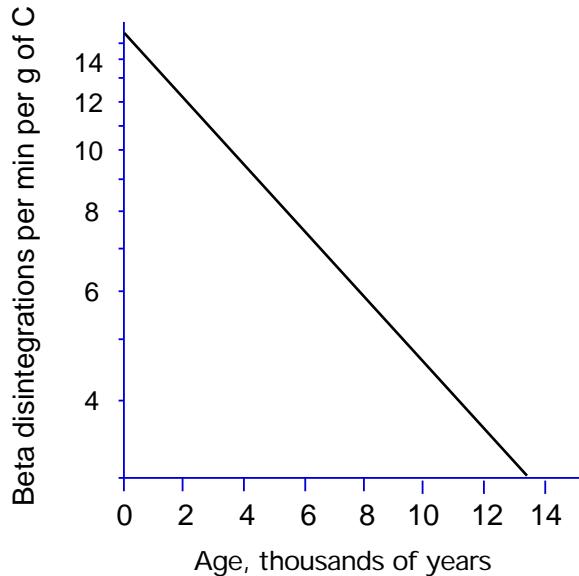

125. (Chromatography) **Demonstration:** Simultaneously drop marbles and ping pong balls down the ICE model chromatography column. Which balls will get to the bottom first? **marbles**, ping pong balls

126. (Chromatography, equilibrium) The chromatographic equilibrium for a species A can be described as A in mobile phase \rightleftharpoons A in stationary phase

A mixture of two volatile compounds is injected onto a column with air, which doesn't interact with the column. Which of the three peaks below is air?

1, 2, 3

Which of the other two peaks corresponds to the larger equilibrium constant K?
1, 2, **3**

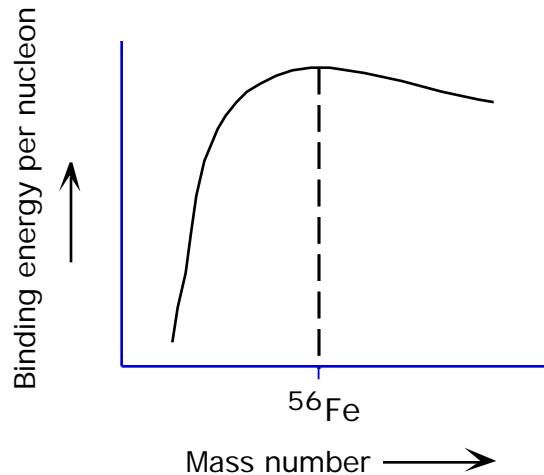


130. (Nuclear chemistry) Can a chemical reaction transform lead to gold?
yes, **no**

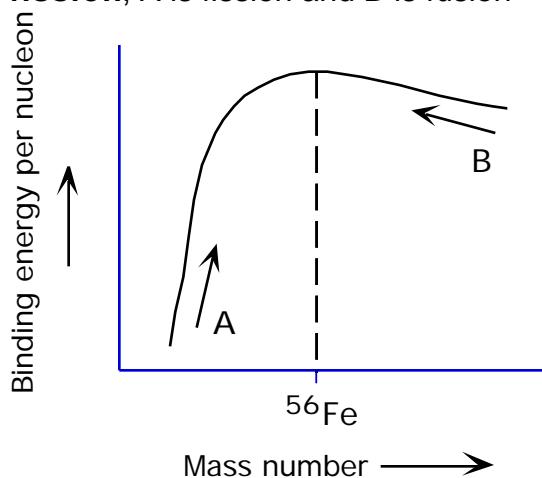

131. (Nuclear chemistry) A proton would be denoted

$$_0^1 p, _1^1 p$$

132. (Nuclear chemistry, half lives) From the semilog plot of $\log(\text{disintegration rate})$ vs. time (below), the approximate half life of ^{14}C is
2000 years, **6000 years**, 10,000 years


133. (Nuclear chemistry, critical mass) Consider a small sphere A and a larger sphere B. Which has a larger surface-to-volume ratio?
A, B

In order to sustain a nuclear chain reaction, is a large or small surface-to-volume ratio desired?
large, **small** (large sphere having at least the so-called critical mass)


134. (Nuclear chemistry) From the plot of binding energy as a function of nucleon, more stable nuclei are made by

moving toward the maximum in the plot at ^{56}Fe , moving away from the maximum in ^4He in the plot at ^{56}Fe

Which direction is fusion of nuclei and which is fission (see plot below)?

A is fusion and B is fission, A is fission and B is fusion

153. (Nuclear chemistry) To balance the equation

the other element produced is

Ra, Rn, Po

154. (Logarithms, nuclear chemistry, half-lives) **Demonstration:** Pass out semilog paper and have students plot the following data for decay of a Tc isotope. What is the approximate half life in hours?

4, 6, 8

time, hr	disintegrations/min
0	180
2.5	130
5.0	104
7.5	77
10.0	59
12.5	46

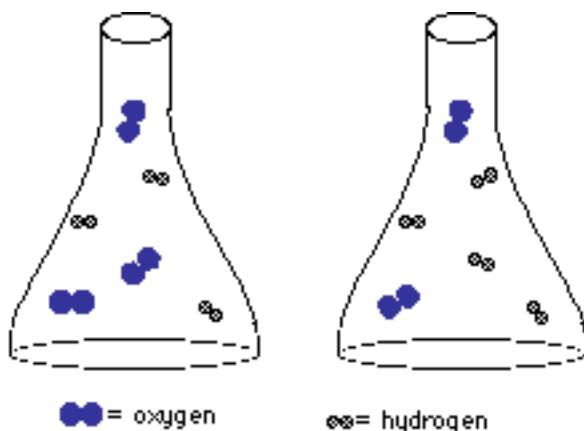
173. Demonstration: Draw or obtain a rectangle. Measure one side of the rectangle carefully to 3 significant figures, and measure the other side of the rectangle to only 1 significant figure. Ask the class what the area of the rectangle is based on your measurements.

What is the area of a rectangle that is 3 m by 1.11 m?

3.33 m², 3 m²

174. The following columns of substances are listed as a combination of pure substances and mixtures. Which column represents mostly pure substances and which mostly mixtures?

A	B
milk	raisin bran
table salt	muddy water
colorless diamond	air
graphite	gold

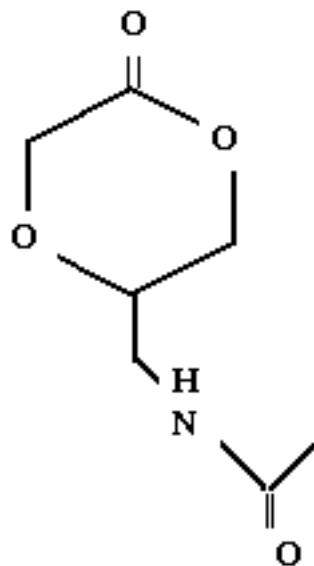

column A is mostly pure substances and column B is mostly mixtures

column A is mostly mixtures and column B is mostly pure substances

Which substances are in the wrong column?

milk, graphite, raisin bran, gold

185. Which of the flasks below will contain a mixture when all the hydrogen reacts with oxygen to give water?

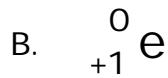


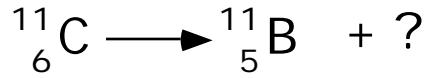
194. For the amino acid glycine (H₂N-CH₂-CO₂H), the pK_a of the -NH₃⁺ group is about 10 and pK_a of the -CO₂H group is about 2. At pH 0, what form of these groups is primarily present?

NH₃⁺ and CO₂H, NH₃⁺ and CO₂⁻, NH₂ and CO₂H, NH₂ and CO₂⁻

195. The pK_a of the weak acid, HF, is about 3. The pK_b of the weak base F⁻ is about: -11, 3, 11, 13

197. The molecule shown below contains which functional groups?



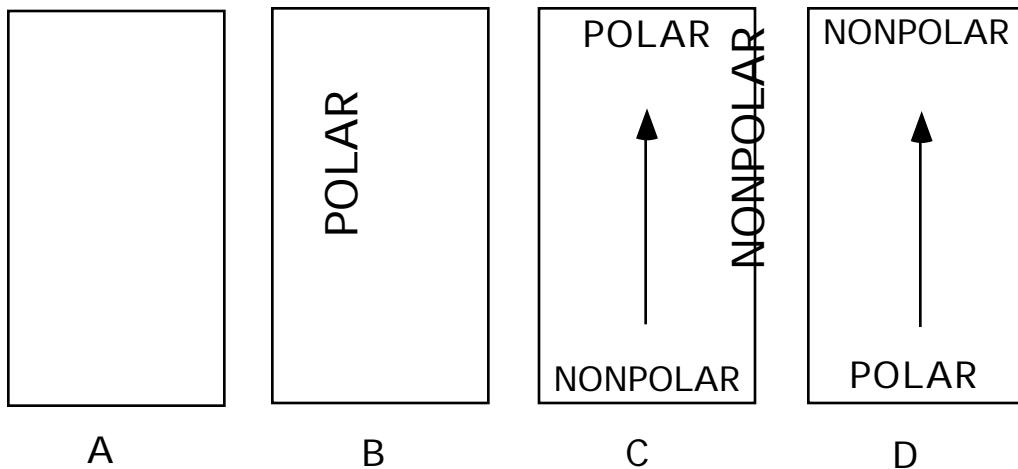


- amide, amine, alcohol
 ester, amide, ether
 ester, amine, ether
 carboxylic acid, amide, alcohol

How many hydrogens are present in the structure?

- 8, 9, 10, 11

207. Which particle is emitted in the following nuclear reaction?


- A, B, C

208. What is the formula of bis(ethylenediamine)dichlorocobalt (III)?

- A. $[\text{Co}(\text{en})_3\text{Cl}_2]^+$
- B. $[\text{Co}(\text{en})_2\text{Cl}_2]^+$
- C. $[\text{Co}(\text{en})_2\text{Cl}_2]^{3+}$

A, B, C

215. Water droplets were recently made to perform the astonishing feat of climbing uphill against gravity on a coated microscope slide. To make this process occur, the slide would have to be coated in which of the following ways?

- A. Uniformly coated with a polar film
- B. Uniformly coated with a nonpolar film
- C. Coated with a film that gradually increased in polarity from the bottom of the slide to the top
- D. Coated with a film that gradually decreased in polarity from the bottom of the slide to the top

A, B, C, D

(Adapted from M. K. Chaudhury and G. M. Whitesides, *Science*, 256, 1539 (1992).)