

80. (Concentration gradient, diffusion) **Demonstration:** A pair of cupric ion solutions, one concentrated and dark blue and the other dilute and light blue, are separated by a removable barrier. What will happen when the barrier is removed?

the solutions retain their respective colors, the dark solution becomes darker and the light solution becomes lighter, **the solutions become indistinguishable in color**

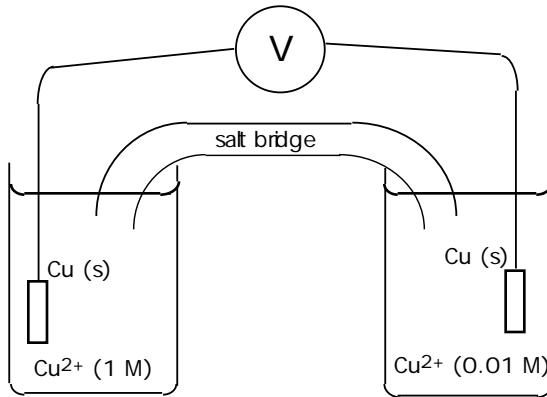
81. (Concentration cells) Refer to the figure below. What is the spontaneous direction of the system?

**$\text{Cu}^{2+}$  (in 1 M solution)  $\rightarrow \text{Cu(s)}$  and  $\text{Cu(s)} \rightarrow \text{Cu}^{2+}$  (in 0.01 M solution),**

$\text{Cu}^{2+}$  (in 0.01 M solution)  $\rightarrow \text{Cu(s)}$  and  $\text{Cu(s)} \rightarrow \text{Cu}^{2+}$  (in 1 M solution)

Will a voltage be measured?

**yes, no**


If the pictured solutions are mixed and then divided into separate cells, will a voltage be measured?

**yes, no**

When unmixed, in which direction do the electrons travel when current is allowed to flow?

**right, left**

**Demonstration:** With a concentration cell, demonstrate the answers to each of the questions above.



82. (Galvanic cells, redox, Le Châtelier's principle)  $\text{Ag}^+ + \text{e}^- \rightarrow \text{Ag}$   $E^\circ = 0.80$  V;

$\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$   $E^\circ = 0.34$  V

Will Ag react with  $\text{Cu}^{2+}$ ?

**yes, no**

Will Cu react with  $\text{Ag}^+$ ?

**yes, no**

**Demonstration:**  $\text{Cu} + 2 \text{Ag}^+ \rightarrow \text{Cu}^{2+} + 2 \text{Ag}$  Place a sheet of copper into a  $\text{AgNO}_3$  solution. The submerged copper will be plated with silver at the end of the reaction.

**Demonstration:** Construct a galvanic cell: Cu Cu<sup>2+</sup> Ag<sup>+</sup> Ag. Measure the voltage. If water is added to the Cu<sup>2+</sup> cell, how will the voltage be affected?

**voltage will increase**, voltage will decrease, no change  
If ammonia is added to the Cu<sup>2+</sup> cell to form an amine complex, how will the voltage be affected?

**voltage will increase**, voltage will decrease, no change  
If Cl<sup>-</sup> solution is added to the Ag<sup>+</sup> half cell to precipitate AgCl, how will the voltage be affected?

voltage will increase, **voltage will decrease**, no change  
As current passes, the voltage increases, **decreases**, stays constant

127. (Concentration cell, semiconductors, doping; Ch. 8 "Companion") To minimize diffusion of a dopant into a semiconductor, heat **at low temperature for a short time**, at high temperature for a long time

Which way do electrons want to go in a p-n junction to establish equilibrium?

**n-type side to p-type side, p-type side to n-type side**

— — — — E<sub>f</sub>

E<sub>f</sub> — — — —  
p-type      n-type

Which p-n junction will give the larger voltage?

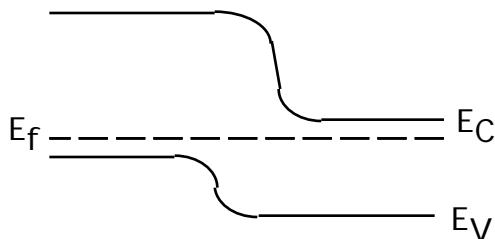
**A, B**

A

B

E<sub>f</sub> — — — —

— — — — E<sub>f</sub>


E<sub>f</sub> — — — —

— — — — E<sub>f</sub>

Consider a p-n junction formed by ZnSe (band gap 2.7 eV) and GaAs (band gap 1.4 eV). Which side of the junction is ZnSe?

**left, right**  
Which side of the junction is p-type?

**left, right**



206. If the reduction of mercury (I) in a voltaic cell is desired, the half reaction is:



Which of the following reactions could be used as the anode (oxidation)?

A.  $\text{Zn}^{2+} + 2\text{e}^- \longrightarrow \text{Zn} \quad E^\circ = -0.76 \text{ V}$   
 B.  $\text{Br}_2(l) + 2\text{e}^- \longrightarrow 2\text{Br}^-(\text{aq}) \quad E^\circ = 1.07 \text{ V}$

**A, B**

212. A concentration cell is made, having Ag electrodes immersed in  $\text{AgNO}_3$  solutions of different concentrations. When the two cell compartments have  $\text{AgNO}_3$  concentration of 1 M and 0.1 M, the measured voltage is 0.06 V. What will the voltage be if the two compartments have  $\text{AgNO}_3$  concentrations of 1 M and 0.01 M?

zero volts  
 0.03 volts  
 0.06 volts  
**0.12 volts**

238. Both leads of a light-emitting diode are dipped in water, dried, and then dipped in mercury. In which liquid(s) will the LED light up?

$\text{H}_2\text{O}$ ,  $\text{Hg}$ , both, neither