Unit Cell Modeling

unit cell models

This year my students experienced something a little new to them on the Chemistry Olympiad. It was a question about the crystal structure of a mineral. I have not been teaching the “unit cell” concept in great detail and started to reevaluate my unit on liquids and solids. This question has been appearing on the semifinal exam of the Chemistry Olympiad for a few years but not the local exam until this year. I actually like it when something like this happens. It allows me to reevaluate what I am teaching in class, provides me an opportunity to learn new things, and brings new material into my curriculum. 

Struggles with Bonding...Making it Simple...

Chemical misconceptions

I have always struggled teaching the concept of bonding. What is a chemical bond? Is it just covalent or ionic? What about hydrogen bonds? Are those real bonds or just attractive forces pretending to be bonds? If they are not official bonds, what do we call them? How about intermolecular forces? How are those different from salt crystals that attract to other salt crystals but are called ionic bonds? How about "electronegativity"? If there is a metal nonmetal compound but it is just shy of the "cut off" for the difference between polar covalent and ionic, what type of bond is it? Essentially, as I got confused over the years, this translated into confused students and rushing on to get to the next unit in an attempt to cut my losses.

The first PBL experience I facilitated was a flop.

My first big project my students engaged in during the 2013-14 school year was, at best, a mediocre experience and, at worst, a giant waste of valuable instructional time we'd never get back. I was at a new school and had a lot of goals I wanted to explore - further investing time into developing classroom culture, engaging students into taking more ownership in their learning instead of being passive recipients, pushing students deeper while meeting them where they were at - in short, developing my teaching identity in a context with a lot of autonomy. I had total teaching freedom.

 

Standards-Based Grading in the Chemistry Classroom

Standards Based Grading

An educational reform that has been gaining a large amount of popularity in the last decade is standards-based grading (SBG). The heart of the SBG movement is truly rooted in one very important question, “what do you want your grades mean?” In a traditional points-based system, a student’s grade typically reflects performance on tests and quizzes, ability to turn in homework, participation, and maybe some extra points for bringing in tissues. This system leaves little room for reflection, remediation and growth. It also puts an undue weight on behavior as opposed to learning. In an SBG system, a student’s grade reflects how well he/she has mastered a set of learning targets. This system gives students timely feedback and opportunities to remediate and reassess their knowledge and skills. Behavior is modified outside of the gradebook so grades simply reflect learning. 

Inquiry, "Sticky Water" and some great models...

Sticky Water Lab

 I just completed covering "ionic and covalent" bonding with my studenets. I wanted to bridge the gap to intermolecular forces. I found a great lab called "Sticky Water" from Target Inquiry - Grand Valley State.(link is external)  Before I continue, I have to provide "full disclosure". I spent three years with the Target Inquiry Program at Miami University Ohio (Project TIMU(link is external)). There is a lab called "Sticky Water" that was written  by a teacher in the Grand Valley State program. First, the activity focuses on just water, then ethane, then ethanol. 

Chemistry Infographic Contest

Infographic contest

American Chemical Society (ACS) ChemClubs and ChemMatters have teamed up to offer a chemistry infographic contest for teachers, students, and really, any chemistry aficionado out there who would like to enter. Choose any chemistry topic and communicate it creatively and clearly through an original infographic. A class project or science club activity, perhaps?

JCE 93.01—January 2016 Issue Highlights

Journal of Chemical Education January 2016 Cover

Kick Off 2016 with Volume 93

The January 2016 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: examining the flipped classroom; central ideas in chemistry & teaching; chemistry, art, & color; expanding student understanding; improving student communication skills; analytical chemistry & instrumental analysis; experimenting with natural products; undergraduate research experiences; educational resources; from the archive: using nonfiction to teach.